Sebastian Rieß

Dr.-Ing. Sebastian Rieß

Leiter Prüfzentrum Nürnberg

Department Chemie- und Bioingenieurwesen (CBI)
Lehrstuhl für Technische Thermodynamik (LTT)

Raum: Raum PZN
LTT Prüfzentrum Nürnberg, Voltastr. 4
90459 Nürnberg


  • Gemischbildung und Verbrennung von Alkoholen und anderer biogener Kraftstoffe in mischungskontrollierten Brennverfahren

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Oktober 2020 - 31. März 2023
    Mittelgeber: Bundesministerium für Ernährung und Landwirtschaft (BMEL)
  • Kompressionszündung regenerativer Kraftstoffe

    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

    Titel des Gesamtprojektes: Injection, mixing, and autoignition of e-fuels for CI engines
    Laufzeit: 1. Juni 2020 - 31. Mai 2022
    Mittelgeber: Bundesministerium für Wirtschaft und Technologie (BMWi)

    One part of sustainable future mobility will be e-fuels synthesized using regenerative energy. They provide chemical energy storage and are an important step on the way to controlled, clean, and efficient combustion. However, to convert them back into mechanical power, their physical-chemical behavior in the internal combustion engine needs to be understood and condensed into simulation tools for design. At the same time, certain classes of e-fuels promise to be much more conducive to clean and efficient engine combustion. The target of this project are oxygenated e-fuels for compression-ignition engines.
    The project goal is to acquire a better understanding of the spray atomization and ignition of oxygenated e-fuels. Starting from a reference fuel that represents current diesel fuels, the proposed project will focus on oxygenated e-fuels and derived blends. With an array of experimental techniques, the species distribution and temperature field in free jets will be measured quantitatively. CFD simulations and chemical mechanism reduction are used to complement the experimental results. Experiments and simulation in an optically accessible engine then are used to tranfer these transfer to the much more complex boundary conditions of a running engine. Each project partner will perform experiments with the same injectors and boundary conditions, and will first use simple optical techniques to make sure that indeed the spray behaves as in the other laboratories. Based on this common experiment, each partner then contributes additional physical insight with the advanced optical diagnostics or simulation that are the specialty expertise of that research group (e.g., laser-induced fluorescence, Rayleigh and Raman scattering), such that a very complete picture of spray, mixing, and ignition can be assembled.
    The research network consists of institutes with a expertise in combustion research using optical diagnostics and multidimensional simulations. The Institute of Engineering Thermodynamics at Friedrich-Alexander University (FAU/GER), the Combustion Research Facility at Sandia National Laboratories (SANDIA/USA), and the Institute for Combustion and Gas Dynamics at the University of Duisburg-Essen (UDE/GER) all will measure the temperature and species distribution in the fuel jet, but each with different optical methods to minimize overall experimental uncertainties. They will also image several indicators of cold-stage and hot-stage ignition. The Department of Mechanical Engineering at Shanghai Jiao Tong University (SJTU/CHN) will derive chemical kinetic models as an input for simulations at the Institute of Powertrains and Automotive Technology at Vienna University of Technology (TUW/AUT). Their CFD simulation will be validated against the experiment, but will also provide additional information that is not accessible by experiments. The project will be guided by an advisory board from industry with representatives from both SMEs and larger companies.
    The main expected result is the promotion of innovations in the field of renewable-energy storage. Such innovations will create additional demand in chemical process engineering, catalysis, and process equipment for synthetic fuel design and production. The experimental and numerical methods developed in the proposed research project will help the R&D in high-tech companies specialized in measurement technologies, optical systems, and simulation of reactive flows. In these areas, major developments and market contributions are provided by small and medium size enterprises (SME).

  • Grundlegende Studie von Dual-Fuel-Verbrennungsmotoren basierend auf dem Kraftstoffdesign-Konzept

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Januar 2019 - 31. Dezember 2021
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)

    Diesel engines are widely used as power devices in commercial vehicles, engineering and agricultural machineries. However, recent social trends as well as the stringent emissions legislations referring to diesel engines are able to precipitate legislative actions for the partial substitution of diesel by cleaner fuels in the imminent future. China and Germany are both the primary countries of automobile production and sales, and have both joined the Paris Agreement to cope with the global climate change. Th erefore, both countries have the same demand in energy saving and emissions reduction in the transportation field, and the development of high efficiency and clean diesel engine combustion concept s , e.g. dual fuel compression ignition engines, is in line w ith their national strategies. The combustion process in the so called dual fuel engines refers to the compression ignition of the direct ly injected fuel in a premixed gaseous or liquid fuel/air environment. The underlying cause is that in a dual fuel combustion, most of the direct ly injected fuel is burned in the premixed combustion regime and soot formation from the diffusive burn could be significantly reduced. Furthermore, depending on the carbon content of the premixed and directly injected fuel, the d ual fuel operation mode can lead to significant decrease in carbon dioxide emission. The proposed joint research in this project will exploit the complementary facilities and expertise of Shanghai Jiao Tong University (SJTU) and Friedrich Alexander University of Erlangen Nuremberg (FAU) for the development
    and optimization of dual fuel engines with low carbon fuels such as natural gas, methanol, dimethyl ether and polyoxymethylene dimethyl ethers. Based on the scientific problems to be addressed and techni ques to be used, FAU will focus on the characterization of the fuel injection , mixing and ignition processes in the dual fuel regime using an in house designed constant volume vessels which is able to provide an ultra high temperature and pressure
    environment. T he findings will provide scientific and technical guidance for the development of controllable ignition and highly efficient low emissions combustion strategies for dual fuel engines, which will be conducted by the SJTU team. Additionally, the colla boration between SJTU and FAU will offer a unique training platform for PhD students and early career researchers from both sides. This unique training experience will equip them with skills, knowledge and international vision, contributing to their future careers and also enabling them to
    propose possible solutions to global problems in the future.

  • Alternative erneuerbare Kraftstoffe aus Kunststoffabfall und ihre Verbrennungs- und Emissionseigenschaften in der Dieselmotorischen Verbrennung

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Juli 2015 - 30. Juni 2017
    Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
  • Anwendung von Wasserstoff

    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

    Titel des Gesamtprojektes: Bayerisches Wasserstoffzentrum
    Laufzeit: 1. Januar 2012 - 31. Dezember 2016
    Mittelgeber: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)

    Im Teilprojekt III werden Technologiebedarf, erreichbare Leistungen und Integration in den LOHCSystemverbund für die (Rück-)Verstromung von Wasserstoff mit thermischen Maschinen untersucht.
    Betrachtet werden die drei in der Energietechnik bedeutendsten thermischen Maschinen - Gasturbinen
    (TP III.1.1), Hubkolbenmotoren (TP III.1.2) und Dampfkraftprozesse (TP III.1.3). Für alle drei
    Anlagentypen ist die wärmetechnische Integration der Maschinen in das Gesamtsystem entscheidend für
    die erreichbaren Wirkungsgrade. Die Verbundeffizienz profitiert maßgeblich durch Nutzung von Abwärmen
    der thermischen Prozesse, setzt jedoch auch Grenzen in der Optimierung der thermischen Maschinen,
    damit eine für die Dehydrierung ausreichende Wärmeenergie zur Verfügung steht. Im optimierten Fall
    übersteigt der Wärmebedarf der Dehydrierung des LOHC Marlotherm die verfügbare Abwärme sowohl der
    Turbine als in geringerem Umfang auch des Motors. Spezifisch für die drei Wärmekraftprozesse müssen
    die Maschinen für den Wasserstoffbetrieb und die im Projektverbund ermittelten speziellen
    Randbedingungen der LOHC Technologie betrachtet werden.